COVID-19 total case prediction using Machine Learning

COVID-19 has been a pandemic of high concern due to its effects on human health and the large amount of deaths caused by the SARS-CoV-2 virus widespread across the world in today's situation. It is Very important for us to know the total number of cases that could have been on a particular day according to the daily updates of the new cases in that location. Hence, the aim of this Study was to build a machine learning model with two of the extremely popular Regression Algorithms such as Random Forest Regressor as well as the Linear Regression Algorithm.

In this study, the prediction of total covid-19 cases is carried out and also the suitable model of best fit for the type of data is analyzed. Data is taken from Owid COVID-19 Data Website where we are using the latest data of 18th July,2020.

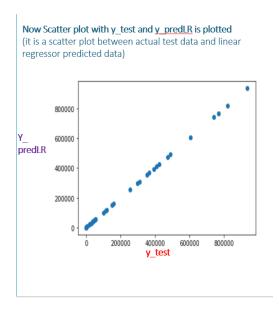
The Description of data is provided below till 18th July ,2020

Column	Mean	Mode	Median
<u>Total_cases</u>	136393.683417085	5734.0	0.0
New_cases	5044.381909547738	693.0	0.0
<u>Total_deaths</u>	3938.934673366834	166.0	0.0
New deaths	128.6532663316583	27.0	0.0
total cases per million	98.83563316582915	4.155	0.0
new cases per million	3.6553417085427142	0.502	0.0
total deaths per million	2.85429648241206	0.12	0.0
new deaths per million	0.09321608040201008	0.02	0.0
total_tests	3757080.3421052634	2564154.0	there are 114 mode values)
new_tests	116709.2777777778	103523.0	there are 108 mode values)
total_tests_per_thousand	2.7225438596491225	1.858499999999998	0.01
new tests per thousand	0.08456481481481484	0.075	0.001
new tests smoothed	99516.63865546219	89872.0	1125.0

The actual columns which are used as the Independent or the Feature Variables are being showed above. Various Basic calculations such as Mean, Median, Mode are being calculated here.

Various Analysis was done on the data:

1. Univariate analysis:


Histogram is one of the common univariate analysis methods where the distribution of the data can be observed. The Various feature variables used in our analysis are being plotted to find their distribution of data across the dataset.

The Linear Regression Model:

Linear Regression is one of the popular regression models built for continuous data prediction. The linear regression model fits a line

$Y = \beta_0 + \beta_1 X_i$

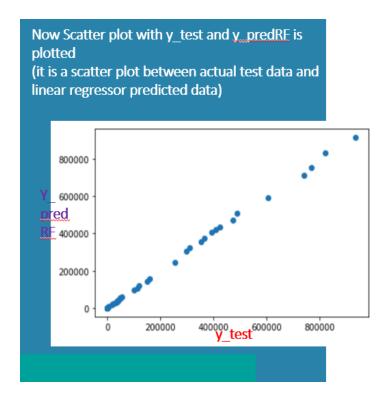
- The Following Dataset after clearing the Null Values and Unnecessary Data columns the Model is fit to Linear Regression Model.
- Train test split was done and the training data is fit into the model.
- Then the testing is done accordingly.

Analysis of fit of Linear Model on the data:

The Various Tests or Validation was been done and their scores are as follows:

1. Accuracy was found to be :0.999999999968615

2. RMSE score: 0.4202825401794529


3. Fivefold Cross validation score: 0.9865092359544476

Analysis: The Conclusion is that the Model is quiet in good fit with data and can be expected to give good prediction results near to the originals.

Random Forest Regressor:

Random Forest Regression is on of the Ensemble Techniques called as Bagging. The Random Forest is an ensemble of Decision Trees where the Vote Casting is done to find the final output.

- Train test split was done and the training data is fit into the model.
- Then the testing is done accordingly.
- The testing prediction was scatter plotted against y_test in the data and deviations were found

1. Accuracy was found to be: 0.998994974199048

2. RMSE score: 0.4202825401794529

3. Five fold Cross Val score: -3.59914

Analysis: The Model has good Accuracy and RMSE score but the Fivefold Cross Val score is negative. Hence the prediction might be of less accuracy

Prediction of data done on 17th July,2020:

Using the above models built ,predicting the total_cases on 17th of July. The Data is as follows:

Data prediction of Total Cases on 17th July,2020

The following data was given as input to the to the Linear Regression model and Random Forest Regression Model.

Date	737623(Ordinal value of 2020-07-17)
New_cases	34956
Total_deaths	25602
New_deaths	687
Total_cases_per_million	727.412
New cases per million	25.33
Total deaths per million	18.552
New deaths per million	0.498
Total_tests	3.757080e+06
New tests	116709.277778
total tests per thousand	2.722544
new_tests_per_thousand	0.084565

Results:

- 1.Linear Regression Prediction on Total cases = 1003831.90603254
- 2.Random Forest Regression prediction on Total cases=813695.315
- 3. Total Number of Covid cases on 17th July in Actual= 1003832 (as per data)

So, it can be concluded that Linear Regressor fits really well than that of Random Forest Regressor.